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Coherence of light scattered from a randomly rough surface
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We study the coherence pfpolarized light scattered from a one-dimensional weakly rough random metal
surface in contact with vacuum. The mutual coherence function of the single nonzero component of the
scattered magnetic field is calculated in planes parallel to, and at increasing distances from, the mean scattering
surface in the vacuum region. It is found to be the sum of a contribution that is independent of the distance
from the mean surface and a contribution that is a function of this distance and decays to zero over a distance
of the order of the wavelength of the incident light. It is also shown that the spatial coherence of the electro-
magnetic field in the far field in a plane at a fixed distance from the mean surface, as a function of the relative
distance along it, mimics the surface height autocorrelation function at short relative distances and oscillates
with two periods, T;=\ and T,=\/sin 6, where 6, is the angle of incidence. The former is due to the
excitation of lateral waves, while the latter is due to the coherent interference of the multiple scattering
processes that lead to the enhanced backscattering effect. In the near field the spatial coherence of the elec-
tromagnetic field measured at a fixed distance from the mean surface displays oscillations that are due to the
excitation of surface plasmon polaritons. The period of these oscillations equals the wavelength of the surface
plasmon polaritons, while the exponential decay of their amplitude is determined by the energy mean free path
of the surface plasmon polaritons.
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I. INTRODUCTION density function9] assumed to have a Gaussian form.

In an early theoretical study of the radiation emitted by a N this paper we calculate the spatial correlation of a
planar quasihomogeneous lambertian sofifdeit was pre- p_-polarl_zed optical field of frequenay scattered from a one-
dicted that that radiation is not completely spatially incoher-dimensional randomly rough surface of a metal. The plane of
ent: at a given frequenay the radiated field correlates over incidence is thex;x; plane, and is perpendicular to the gen-
regions whose spatial dimensions are of the order of therators of the surface. The metal is assumed to be homoge-
wavelength\ =27c/ w. This result was obtained by neglect- neous, but the surface roughness is treated realistically. We
ing the contribution of the short-range evanescent waves raalculate the mutual coherence functi@x, ,xs;X;,Xs| w)
diated by the source, and has been successful in describirgH(X; ,X3| @)sdHa(X] ,X5| )5, Where Hy(xy,%5| w)s is the
the coherence properties of thermal emission in the far fieldsingle nonzero component of the magnetic vector of the scat-
In addition, the coherence properties of the radiation wergered light in the vacuum region above the metal surface, and
found to be independent of the distance from the sourcehe angle brackets denote an average over the ensemble of
when this distance is greater than the wavelength realizations of the surface profile function. The calculation of

In the past several years, due to advances in experimentai(x,,x3;X;,Xs| w) is carried out through the solution of a
capabilities, and interest in nanoscale phenomena, the coh@ethe-Salpeter equatiorl0]. The choice ofp-polarization
ence properties of optical radiation in the near field from itsfor the incident light is due to the fact that the vacuum-metal
source have begun to be studied theoretid@h6). Itis only  interface supports g-polarized surface plasmon polariton,
very recently, however, that these properties have begun tand the angular dependence of the intensity of the light scat-
be studied experimentally. In two papers Apostol and Dog+ered diffusely displays the enhanced backscattering effect
ariu [7,8] have examined theoretically and experimentally[11]. The effect of each of these properties of the scattering
the spatial correlations of optical fields close to a highlysystem on the mutual coherence function is examined. We
scattering randomly inhomogeneous medium as functions dfnd that C(xq,X3; X1, X3| @) can be written as the sum of a
the distance from the surface of the medium. What was megontribution from radiative scattered waves that is indepen-
sured by these authors were the coherence properties in t@@nt ofx,;, and a contribution from the evanescent scattered
near field of ||ght transmitted through hlghly inhomogenGOUS\Naves that is a function OfS that decays to zero with in-

media bounded by weakly rough random surfaces. The cortreasingx; over a distance of a few wavelengths of the in-
tribution to these coherence properties from the evanescegident light.

field was demonstrated experimentally, and it was shown that

they are re_lated to '_[he statistical p_roperties of the surface. In Il. THE SCATTERING SYSTEM

the theoretical studies accompanying the experimental work,

the surface of the random medium was considered as being The physical system we consider in this paper consists of
equivalent to a homogeneous, planar, statistically stationaryacuum in the regioxs> ¢(x;), and a metal, characterized
source of optical radiation, characterized by a cross-spectrély an isotropic, frequency-dependent, complex dielectric
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function e(w) = €1(w) +iex(w), in the regionxg < (x;). of Eqg. (3.1). The elements of the mutual coherence tensor
The surface profile functiori(x;) is assumed to be a (Ei(xl,x3|w)SCEj(xi,xg|w)’;g where i,j=1,3, are then ob-

single-valued function of, that is differentiable, and consti- tained fromC(xy,X3;X;,X3| ) according to

tutes a stationary, zero-mean Gaussian random process, de-

fined by Vo c\? &
<E1(X11X3|w)scEl(Xl!X3|w)sc>:(;) P
(L) £(x))) = SPWI(Ixq = xq ). (2.1 3773
In Eq. (2.1) and in all that follows the angle brackets denote XCxg,Xg1 %05 X5|),
an average over the ensemble of realizationg(&f), and (3.3a

5=(%(x1))"? is the rms height of the surface. The surface

height autocorrelation functiow(|x, |) in the present work is . c\2 R
assumed to have the Gaussian form (E1(Xq, Xg| @) s E3(X], X3l @) g = = <—) ,
w (9X3 (9X1
- _\2/a2
W(|x|) = exp(- x7/a%), 2.2 X Clxg X X, ),
where the characteristic lengéhs the transverse correlation (3.3b
length of the surface roughness.
It is convenient to introduce the Fourier integral represen- >
1 1 I 12 12 * C
tation of the surface profile functiof(x,), (Ea(Xg,Xa| ) s Eq (X, X4 @) = (_) ’
- dQA w &Xl 0X3
{(xq) = 3 ZT§(Q)GXF1(iQX1)- 2.3 X C(%q,%g; X}, X5| @),
. (3.309
The Fourier coefficient(Q) is also a zero-mean Gaussian
random process, defined by 2 2
A (Ea(xq, X5l @) s E(X1, X3 )50 = (E)
(U@ =2m8Q+ Q") &g(|QD, (2.4 w/ % 9%
whereg(|Q|), the power spectrum of the surface roughness X C(Xq,Xg; X1 X5 ).
is given by (3-30

On combining Eqgs(3.1) and(3.2) we obtain the result

o “ dqg [ do
C(X11X3;X1.X3|w):f ;j o
xexpli(gx, — q'xy) + i ag(q)x3

- ag(@ X IHREWR (@']K). (3.9
The surfacexg={(x;) is illuminated from the vacuum by a
p-polarized plane wave of frequeney, whose plane of in- In what follows we will focus our attention on the correlation
cidence is thex plane. The single nonzero component of function (R(g| k)R (g’ | k)).
the magnetic vector in the vacuum regirg™> {(X;)may that In what follows we assume that the surface is weakly
satisfies the boundary conditions at infinity is the sum of arrough so that the Rayleigh hypothegl2] is applicable. This
incoming incident plane wave and of outgoing scatteredneans that the expressig¢8.1) for the magnetic field in the

6(Q) = j dxW(xexd-iox) (2.5

=\ma exp(- a2Q%/4). (2.5b)

Ill. THE MUTUAL COHERENCE FUNCTION

waves, vacuum region which, strictly speaking, is valid only foy
- 4 > {(X1)max Can be used in satisfying the boundary conditions

Ha(Xg, Xa| @) :eXF[ieriao(k)Xa]"'f —qR(q|k) at the surfacex;={(xy) itself. Although rigorous limits of
o 27T validity of the Rayleigh hypothesis for a one-dimensional

. . randomly rough surface are not known, by analogy with the

xexligx, +iag(a)Xs], CR known limits of its validity for one-dimensional periodically
where ag(q) =[(w/c)2- Y2 with Reag(q)>0, Imap(q) corrugated surfacddl 3] it is believed that it is valid when
>0. A time dependence of the field of the form éxjwt)  the inequalityldZ(x,)/dx | <1 holds In this case the scatter-
has been assumed, but has not been indicated explicitly. ing amplitudeR(q|k) satisfies the reduced Rayleigh equation

We are concerned here with the evaluation of the correlal14]
tion function (the mutual coherence functipn
. “dg . :
Clx.x5:x1,X5] @) = (Halxa,Xgl0)sdHo( X3l 0)so), (3.2 f S NOplaRE==-Npl), (3.5

wherexz> {(x;) andx;> ¢(x;), andHy(Xq,X3| w)s, the scat-
tered field, is given by the second term on the right-hand sidevhere

036606-2



COHERENCE OF LIGHT SCATTERED FROM A.. PHYSICAL REVIEW E 71, 036606(2005

| - - R(glk) = - 278(q - k) - 2iG(gKagk). (3.1
N®(plg) = (a(p) oio(q)lp q)[pqm(p)ao(q)], (alk) .w(q_ ) -2 (ql Jag(k).  (3.19
a(p) ~ ao(q) From Eq.(3.14 we immediately obtain the result
(363 (R@IIR (0'[0) = (REK(R (oK)
1(a(p) + ag(K)|p - K +4[(G(qlk)G (a'[k)) = (G(q[k))
NOpil = 2P WP ZR )i, WG |

a(p) + ag(k) X(G"(q'[K)]e(K). (3.15

(3.6b We will evaluate the two contributions on the right-hand side
and a(k)=[e(w)(w/c)2-?]*2, with Rea(q)>0, Ima(gq) OfEQ.(3.19inturn.
>0. The functionl(y|Q) appearing in Eqs(3.6) is defined From Eq.(3.14 we find that
by (R(GK) = 27r8(q = k) = 21(G(qK)ag(k).  (3.16)
Due to the stationarity of the surface profile functidix,)

the averaged Green'’s functid(q|k)) is diagonal ing and
kl

|(7|Q)=f dxexp(=iQxy)exp[-iy(x)]. (3.7

We seek the solution of E¢3.5) in the form[15]

(G(K) = 278G - WG(K. (3.17
R(GIK) = 278(0 ~ WRo(K) ~ 2IGo(Q) T(GKIGo(Kag(K), Ak =2n g

The Green'’s functionG(k) is related to the unperturbed

(3.8 Green'’s functionGy(k) by [10]
where . 1 . ie(w)
Ry(k) = Sk = a( 3.9 TG0 -MK)  e(w)ag(K) + a(k) - ie(@M(K)’
e(w)ag(K) + a(k) ' (3.19
is the Fresnel coefficient for the reflection pfpolarized whereM(K) is a proper self-energy that is obtained from the
light from a planar vacuum-metal interface, and pair of equationg10]
() 3.10 (M(allo) = 278G~ IM(K),

e(w)ap(k) + a(k)
is the Green’s function for a surface plasmon polariton at a M(g|k) = V(qlk) +f ?J ;—rM(q|p)<G(p|r)>
planar, vacuum-metal interface. The transition mafiig| k) —0 £TJ —o0 £T0
is postulated to satisfy the equation X[V(r]K) = (M(r[K))]. (3.19

_ ” dp When we combine Eq$3.16—(3.18 and use the definition
Tk =V + | SPTaGmVpk. (31D (g e Somhine

Equations(3.5), (3.8), and(3.11) define the scattering poten- (R(glk)) = 2m5(q - WR(K), (3.209
tial V(q|k) that appears in E¢3.11). From these equations \here

we find that this potential is the solution of the equaffitd]
_ elw)ap(k) — a(k) +ie(w)M(K)

fw %2[N<+)(p|q) _ N(‘)(p|q)]%|(k)) (= e(w)ag(K) + a(k) —ie(w)M(K)
- old It follows from Eqgs.(3.4), (3.19, and(3.203 that
= {ND(p|K)[ e(w) ap(K) — a(K)]

(3.20b

Clx. Xa: 5, X50) = [R(K)Pexplik(x, = X5) + i aro(K) (X = X5)]

+NO(plk kK)+ ak)]}—————. “dg (~ do
(p| )[f(ﬂ))ao( ) a( )]}Zf(w)a’o(k) +4a/(2)(k)f _qf _qexmi(qxl_q/x:ll)
o 27)_, 2w
(3.12
We now introduce the Green’s functi@(q|k) for surface +ilap(Q)X3 — ap(q')xs]}
plasmon polaritons on the randomly rough surface, which is X [(G(q[k)G(q'[K)) = (G(alk))
defined by X(G'(q'K)]. (3.20
G(qglk) = 2m6(q — k)Go(k) + Go(a) T(q[k)Go(k) .
(3.13) IV. THE BETHE-SALPETER EQUATION

By combining Eqgs(3.8) and(3.13), and using the definitions Equation (3.21) is convenient for the determination
(3.9 and(3.10, we obtain the useful relation of C(xy,Xa; X1, %3] @) because(G(q|K)G (q'|k)) —(G(q|k))

036606-3



LESKOVA, MARADUDIN, AND MUNOZ-LOPEZ

x(G"(q'|k)) can be calculated from the solution of the
Bethe-Salpeter equatidi],

(G(qlG (q'K")) =(G(alk)}G (a'|K"))
I
e 2m)_2w)_ 2w)_, 2
X(G(a[XG (a'[r")XI(r,r']s,8"))

X(G(sk)G'(s'[K)), (4.1)

where(I'(r,r’|s,s’)) is the irreducible vertex function. If we
make use of Eq(3.17), Eq. (4.1 becomes

(G(aKG'(q'|k")) = 28(q — k)2md(q’ —K)G(@G (q')

. * ds (* ds
+G(qQ)G (q’)J_ ZSJ py
X(I'(q,q'|s,s"){G(KG(s'[K)).

(4.2)

We now setk’ =k and obtain

(G(a[WG (' |k)) = 2m(q - q')2md(q = K)|G(K)[2

. “ ds (* ds
+G()G (q')J Zj o
X(I'(0,9'[s,s"){G(s|k)G"(s'[K)).
(4.3
To solve Eq.(4.3) we write

(GG ('|k)y = 278(q - q")D(q|k), (4.9

a result that follows from the stationarity of the surface pro-
file function. The stationarity of the surface profile function

has the further consequence tktq,q’ |s,s)) is diagonal in
gqandq’,

(T(0,9']s,9)) =2ms(q-q")U(q[s).

The equation satisfied b$(q|k) therefore becomes

(4.5

“ ds
a(k =27 a-kIGKI+ 6@ | S2Useh.
(4.6)
The solution of Eq(4.6) can be written formally as

d(qlk) = 278(q - K)|G(K)|? + |G(a) PR(g[K)|G(K)|?,
(4.7)

whereIA?(q|k) is the reducible vertex function. It is related to
the irreducible vertex functiobl(q|k) by

R(qlk) = U(q[k) + j %ju(q|s)|e(s)|2ﬁ«s|k)_ (4.9

If we multiply both sides of Eq4.7) by 278(q—q’), then
in view of Eq. (4.4) we obtain

PHYSICAL REVIEW E 71, 036606(2005

(G(qG (q'[K)y = (G(alk)XG (a'[K))
= 2m8(q - 4')|G(a) 2R(gK)|G(K)[2.
It follows from Egs.(3.21) and(4.9) that

(4.9

C(Xq,X3; X1, X3 @) = [R(K)[Zexplik(xy = X3) + i ag(K) (X3 = X5)]
+ 4a§(k)f %exp{iq(xl - X))
o 2T

+i[ag(Q)xs — ag(@)x4]}

X |G(9)PR(q[k)|G (k)| (4.10

This result is exact within the limits of validity of the Ray-
leigh hypothesid12]. We now turn to a determination of
R(g[k).

We approximate the irreducible vertex functioiiq|k) by
the sum of the contributions from all maximally-crossed dia-
grams, because they describe the phase coherent multiple-
scattering processes that give rise to enhanced backscatter-
ing. In calculating these contributions we make the small
roughness approximatiofiL4], which consists of approxi-
mating the scattering potentis(q|k) by the solution of Eq.
(3.12 that is of first order in the surface profile function

{(Xq),

V(glk) = u(qlk)Z(q - k), (4.11)
where
-1
u(glk) = 6(;’2(0) [e(w)ak— a(g)a(K)]
=u(kla)
=u(-q-k =u(-k-aq). (4.12

The results we obtain are therefore limited to weakly rough
surfaces.

We also make théinessentigl approximation of neglect-
ing the imaginary part oé(w) in evaluatingu(g|k). This has
the consequence thatqg|k) is real in the frequency range in
which the real part ok(w) is negative, which contains the
frequency range in which surface plasmon polaritons can ex-
ist.

In the small roughness approximation, Ed.11), the
proper self-energM (k) is given by

“d
M= [ SPrukbrespolp-K). @13

In calculatingU(q|k) we also use the pole approximation
for the averaged Green'’s functids(s) [11]

Clw) _ Clw)
S—ksgw) —iA(w) s+kgw) +iA(w)’

G(s) =

(4.149

where
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Alw) =Alw) + Agfw), (4.15 - A(glk) A(qlk)
R(qlk) = X(qlk) + + . 4.2
" (allg =X(alk) + = 5™+ oz g (429
(o) The first term on the right-hand side of E¢.25 is the
Alw) = , (4.16 ibuti R i . i .
2 c| e1(0) V4| &(w)|- )32 contribution toR(q|k) from single-scattering processes; the

second term is the contribution from all ladder diagrams of
aJ 2 2 two or more rungs; and the third term is the contribution
Agfw) = 2C%(w )( ) { (w) } g2k (), from the maximally-crossed diagrams. We see that the sec-
ler(w)|-1 ond and third terms are equal whgr—k. This means that

(4.17) the height of the peak iﬁl(q|k) at q=-k is twice the height

of the background at its position when the contribution from
|l€1(w)|¥2 the single-scattering processes is subtracted off. It is the peak

Clo) = E(w) -1 (4.18 4 R(qg|k) arising from the third term on the right hand side
of Eq. (4.295 that describes enhanced backscattering. This

ley(w)| 1/2 conclusion follows from the result that the contribution to the

kep() = {—} (4.19 mean differential reflection coefficient from the light that has
ler(w)|-1 been scattered incoherently, calculated on the basis of the

Here A (w) is the amplitude decay rate of the surface plas-approximations used in obtainirfgq|k) is given by[17]

mon polariton of frequency supported by a planar vacuum-

metal interface, whose wave numbekig ), andAgy(w) is dR 2 A(q|k)
) : T - 2

the amplitude decay rate of the suface plasmon polariton du o < 0052 0sc0s 60| G(a)|*| X(alk) + — 5~ ar2

to its roughness-induced scattering into other surface plas- nee

Os

mon polaritons. The result [46] + A(qlk) IG(K)|2 (4.26)
AR (q+k)?+4I? '
U(qlk) = X(qglk) + 2 29 (4.20 .
(q+Kk“+4r where the wave numbeksandq are to be expressed in terms

of the angles of incidence and scatterifygand 6, measured
counterclockwise and clockwise from the positixg axis,
A(glk) = 2C*(w) A(w)[X(aksp X(KsdK) + X(0] = Ksp) respectively, through=(w/c)sin 6, andq=(w/c)sin bs.
_ 2 _ When the result given by E@4.25 is substituted into Eq.
XX(= klk)]+ 2C%(w) A ) IX( ke X(= ksglK) (4.10 and x; is set equal toxs, the correlation function

where

+ X(q|- ksp) X(ksgk)], (4.21)  C(xq,%g; X}, %3] ) takes the form
(alk) =[u(alk)1*5*g(la - k), (422 C(xq,%g;Xq,Xg| ) = [R(K)[Zexp[ik(x; = X;)] + C(X1; X @)pom
I=[A/(A + ZASP)]UZ, (4.23 + C(Xq, X3 X1, X3 @) ey (4.27)

When the result given by E¢4.20 is substituted into Eq. where
(4.8) the resulting equation,

o dg A(qlk)
: Alglk) f ds C(xy;X3|@nom= 4a3(K) —|G(q>|2{X<q|k> +
= —_— JR— y 2
Rl =Xk + o osare t ) 5| X9 < olc 27 AT
A(g[k) .
A(qls) Py ————— |IG(k) [Pexdlig(x, — x})]
2 2 1 14
(qrep+ar [G(9)|°R(sK), (4.29 (q+K)2+4r
4.28
is solved by iteration. However, in each of the resulting in- ( )
tegral terms only the contribution associated wiitt|k) is
kept, and all terms that contaiA(q|k)/[(q+k)2+4I'?] are 5
omitted. The sum of the integral terms obtained in this way is C0%:Xa: X1, Xg @)ev= Aa(K) e |G(q)| X(alk)
just the sum of the contributions from all ladder diagrams of o> (wlo) 2
two or more rungs. The reason for this approximation is that N A(qlk) . A(glk) }
the contribution taR(g| k) from the ladder diagrams is equal ar? - (q+k)2+41?
to the contribution fromA(qg|k)/[(q+k)2+4I'?], the second P S
term on the right hand side of E@t.24), whenq=-k, i.e., in X |Gk exria(x, — xy)]
the backscattering direction, while the integral terms contain- Xexp[— 2Bo(q)Xs], (4.29
ing A(q|k)/[(g+k)2+4I'?] are small in comparisofl7]. In
this way we obtain the result that where
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Bo(@) =[0? = (w/c)’]* Repy(q) >0, Impy(q) <O. 18 @
(4.30 LT 1
The contributionR(k)[2exgik(x, —X}) ]+ C(Xy; X1 | @)nom S in- o8
dependent ofk;. The contributionC(Xy,Xs; X1, X3| @)ey iS @ 45?'2
function of x3 that decays to zero with increasing =~
Finally, we emphasize that although the pole approxima- %1'0 [
tion (4.14 for G(s) was used in calculating the irreducible o

0.5
vertex functionU(qg|k), it is the result forG(q) obtained by g 90
combining Eqs(3.18 and(4.13 that is used in evaluating - 20
the integrals oveq in Egs.(4.27 and(4.28. Therefore, the )
integrands in Eqs(4.27 and (4.28 have branch points at 1.0
g=*(w/c) arising from the presence af(q) in the expres- 0.
sion (3.18 for G(q). In addition, G(q) has simple poles at

q=x[ksj(w) +iA(w)], i.e., at the wave numbers of the surface

plasmon polaritons on the randomly rough surface. Finally, FIG. 1. The contribution to the mean differential reflection co-
the integrands in Eq94.27) and (4.28 have poles atj= efficient from the light scattered incoherently wherpolarized
—-k£i2I', which are associated with the existence of a peak inight is incident normally on a one-dimensional randomly rough
the retroreflection direction in the angular dependence of theilver surface(a) SurfaceA; (b) surfaceB; (c) surfaceC.

intensity of the light scattered incoherently. All of these sin-

gularities manifest themselves in the dependencies QEngth)\ is incident normally on(a) surfaceA and on(b)
C(Xq; X1 | @)hom &N C(Xq, X3; X1, X3| )ey ON X; &N X3. surfaceC; and (c) and (d) when the light is incident at an
angle §,=20 on surfaceA.

The correlation functions shown in Figs(a and Zb)
decrease with increasing over a distance of the order af

We have carried out calculations 6fx;,x3; X}, x| ) for ~ to a constant that is the value (K)|>+C(X;;X;| ®)nom for
three different one-dimensional randomly rough silver surx;—x;=0. The only contribution toC(x;,X3;X;,X3| @) that
faces. All three are characterized by an rms heighb nm. depends on the distance from the mean surface,
One of them(surfaceA) is characterized by a transverse C(X;,Xs;Xq,Xs| )ew atX3=0 can reach quite large values due
correlation lengtta=100 nm; the secongurfaceB) is char-  to the strong enchancement of the surface polariton field at
acterized by a transverse correlation lergt200 nm; while  the surface. For surfack [Figs. 4a), 2(c), and 2d)] it is of
the third (surfaceC) is characterized by a transverse correla-the same order of magnitude EK)|?+C(xy; X1 | @)nom (it is
tion length a=400 nm. The wavelength of the incident, approximately a factor of two larggrand is three orders of
p-polarized light is\=457.9 nm, and the dielectric function magnitude smaller for surfac€ [Fig. 1(a)] than it is for
of silver at this wavelength is(w)=7.5+i0.24[18]. surfaceA. This is because the roughness induced excitation

The three surfaces differ significantly in their scatteringof surface plasmon polaritons is considerably weaker for this
properties. Surfacé, when illuminated at normal incidence, surface. Although on the scale of this figure it appears as if
produces a well-defined peak in the retroreflection directiofR(k)[>+C(x;; X;| w)nom has the same value for surfaCeas it
in the contribution to the mean differential reflection coeffi- does for surfacé\, in fact it differs slightly due to different
cient from the light that has been scattered incoherddify  values of|R(0)|? (0.95293 for surfaceA and 0.96067 for
fusely), (IR/ 90s)incon [Fig. 1(@)]. This is the well known en-  surfaceC), and C(x;;X]|®)nom (0.02775 for surface\ and
hanced backscattering effect. This peak is weaker but stil).01998 for surfac€ at x;—x;=0). When light is incident
visible in the angular dependence(@R/ d6yincon When sur-  normally on a surfacek=0, the functionX(q|k), given by
faceB is illuminated at normal incidendéig. 1(b)]. Surface  Eqgs.(4.22 and(4.23 is an even function off, and the single
C, when illuminated at normal incidence, displays no suchscattering contributions to the correlation functions
peak in(dRy/ 30)incon [Fig. 1(c)]. [In fact, if the vertical scale  C(xq; X} | @)nom and C(Xy,Xg; X}, X5| )ey are real, while their
in Fig. 1(c) were magnified significantly, a peak in the ret- imaginary parts are determined solely by the contributions
roreflection direction would be observed, but it is too weakfrom the multiple scattering processes and are negligibly
to be seen on the scale of Figcl] What is displayed in Fig. small. However, this is not the case at oblique incidence,
1(c) is essentially a scaled version of the power spectrum ofvhich is clearly illustrated in Fig. @).
the surface roughness. These differences in the scattering be-The dependence of the correlation functions
haviors of the three surfaces will manifest themselves in the(x;,X3;X;,X3| @) on (x,—x;) shown in Figs. 2a)-2(d) is,
results of the calculations d(xy,X3;X;,X3|w) for each of  however, quite different for surfacésandC and for surface
them. A at different angles of incidence. In the near fidlxh

In Figs. 2a)-2(d) plots of the correlation function <)) C(xy,Xs;X],Xs|w) oscillates with a single period, while
C(xq,X3; X1, %3] ) = [R(K)[?explik(x; = x))]+ C(X1;X{ | @)hom  the amplitude of these oscillations depends, of course, on the
+C(Xy,X3; X1, X3| w)ey @s a function of(x;—x;)/N andx3/\  parameterss and a characterizing the surface roughness.
are presented for the case wheipolarized light of wave- These oscillations are due to the excitation of surface plas-

0 . f . ) .
-90 -60 -30 0 30 60 90
6, (deg)

V. RESULTS
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1 XgiXyXq|0)

ReC(x

(b)

ReC(x‘,xs;x'1 X.|0)

FIG. 2. The real part of the correlation functig®(x,,xs;X;,X3|w) as a function of(x;~x;)/\ and xs/\ when p-polarized light of
wavelength\ is incident normally or(a) surfaceA and(b) on surfaceC; and the realc) and imaginary(d) parts of the correlation function
C(xq,X3; %], X3| ) as a function ofx;—x;)/\ andxz/\ when light is incident at an anglé,=20" on surfaceA.

mon polaritons supported by the rough metallic surfaces, anié 17 orders of magnitude smaller than the real part, and will
their period is the surface plasmon polariton wavelengtmot be considered further here. For the two smaller correla-
Asgw). Only the contributionC(xy, X3; X1, X3| )ey to the cor-  tion lengths REC(X1; X1 | @)pom IS @n oscillatory function of
relation function displays this type of oscillations. In the case(x;—x};) with a period given byl; =\, the wavelength of the
of oblique incidenceC(xy,X3;X;,Xs| @) displays additional incident light. These oscillations are associated with the
oscillations [see Figs. &) and 2d)] of a larger period, branch points of the integrand in E¢#.28 at q=+*(w/c),
Nsiné,, which are due to the presence of the factori.€., they are due to the excitation of lateral waves. After the
exfik(x,—xy)] in the contribution from the specularly re- few first oscillations, which are strongly influenced by the
flected fieldR(k)|2exfik(x;~X})]. These oscillations are car- central peak in RE(xy; X; | w)nom Which has quite a different
ried out to the far field also. However, in the far field origin, the amplitude of these oscillations decreases with in-
C(x1,%3;X],Xs|w) as a function ofx,~x, oscillates even creasing distancey ~x; algebraically asx,—x;|"¥2 It de-
when light is incident normally on the surfagsee, as an pends strongly on the correlation length of the surface rough-
example, the inset to Fig.(®]. The period of these oscilla- N€SS, as eXp(ma/\)?] and, consequently, for a correlation
tions is\, and they are due to the excitation of lateral waveslengtha=400 nm(surfaceC) is so small that the oscillations
Below we discuss in detail the different contributions to theare not visible on the scale of this figure. The form of
correlation function and the origin of the processes that givéR€C(Xy; X;| @)nom between the first minima on either side of
rise to the oscillations of the correlation function. the maximum ak;—x; =0, i.e., for -\ < (x;—x;) <A\, reflects
We next turn to a consideration of the dependence ofhe surface height autocorrelation functidi|x;—x;|). It is
C(Xq;X; | @)hom ON the difference(x;—x;). In Fig. 3@ we  closer toW(|x,—x;|) the larger is the correlation length
have plotted the real part of this function for the scattering ofThis is easy to understand from an analysis of the integral
p-polarized light incident normally on surfacés B, andC. (4.28. Indeed, for a weakly rough surface the main contri-
For the roughness and experimental parameters assumedhation to the integral comes from the single scattering con-
calculating this function the imaginary part 6fx;; ;| w)nom  tribution X(g|k) which contains the power spectrum of the

036606-7



LESKOVA, MARADUDIN, AND MUNOZ-LOPEZ PHYSICAL REVIEW E 71, 036606(2005

10° ReC(X,,X',|®)yom
10° ReC(X,,X', @)y
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FIG. 3. (a) ReC(x1; X1 | @)homas a function ofx; —x;)/\ whenp-polarized light of wavelength is incident normally on surfac&(——),
surfaceB(- — — 9, and surfaceC( - - - - - ) (b)) ReC(Xy; X1 | ®)hom (¢ O O ©) as a function of(x;—x;)/N when p-polarized light of
wavelength\ is incident normally on surfac€, together with a plot ofA exg—(x;—x;)?/a%] as a function of(x,—x;)/\, where a
=400 nm;(c) ReC(x4;X; | @)nom as a function ofx; —x;)/\ whenp-polarized light of wavelength is incident at an anglé,=20 on surface
A(—), surfaceB(— — -, and surfacé&(- - - - - - ); (d) ReC(xq; X1 | w)nom as a function ofx; —x;)/\ whenp-polarized light of wavelength

\ is incident at an anglé,=20 on surfaceA’ (—) andC'(- - - - - - ).

surface roughness. The larger the correlation length the narx;) is presented in Fig.(8). In this case the oscillations of
rower the power spectrum. As a result the integrand in Egthis function have two periods: a peridd=X\ arising from
(4.28. becomes a function that is highly peaked around the branch points aj=+w/c of the integrand in Eq(4.29),
=0. On removing the slowly varying parts of the integrandand a larger period,=\/sin g, arising from the poles of the
outside the integral, we find that at normal incidenceintegrand in Eq(4.29 at q=—k=*i2I'. The latter oscillations

C(Xy; X1 | @)nom With quite a high accuracy has the form have considerably smaller amplitude than the former, be-

) cause they are due to multiple scattering processes. Their

, 5\?| Ve(w) -1 i i i
Cy X @) nom = 16712(—) | amplitude can be estimated from E¢.28), and is
N | Ve(w) +1
22 _1]4
xexp[— (x, - x})%/a?]. (5.2 ~2malstcod 00%% 6(:20) 1 IG(K)[4
c
This is illustrated in Fig. &), where we have plotted ) (@)
ReC(xy; X1 | @)nom @s a function ok, —x; for the same values % 29072 2 el 242
of the experimental parameters used in obtaining Fig), 3 2A(wé c2|ksp Klexd = (k kop"a/4]
for surfaceC. Also plotted is the function 0.019 ejxp(x; wexd - (k+K p)2a2/4]+A {0)]ekegk + (K alk p)|4
'S S ] 'S

-x1)?/a?], where the value of the coefficient in front of the
Gaussian is estimated from E@.1). The former curve lies
directly on top of the latter. For smaller correlation lengths
the contribution taC(X;; X; | @)pom given by Eq.(5.1) is also xexp - (k—ksp?a®l2] | .
dominant for small values dk,—x;| =\, but becomes dis-

torted by the contribution from the lateral waves.
When the angle of incidence is increased frégg=0° to ~ To demonstrate the presence of the oscillations of the larger

6,=20°, with all the roughness and remaining experimentalperiod in Fig. 3d) we present plots of the function

parameters retaining the values used in obtaining Fig@, 3 ReC(xy;X;| )nom calculated for the surfaces we denotd
the resulting function RE(xy;X;| w)hom Plotted againstx,  and C’, which are characterized by the same correlation

xexd - (k+ ksp)2a2/2] + A )] ekggk — a(k)a(ksp)|4

(5.2
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FIG. 4. () A plot of C(x;,X3;X],Xs| ®)ey @s a function of(x;
—xq) for x3=\/10 whenp-polarized light of wavelength is inci-
dent normally on surfacé, together with a plot ofCp.exd—|x
—xi|/LSp(w)]; (b) an enlargement ofa) in the region of smallx;
=X1)/\.

lengths as the surfaces and C but by an rms heights
=15 nm.

Finally, we examine the  dependence
C(X1,Xa; %1, X3| @)y ON (X;=X7) at a fixed value ok, in the
near field. In Fig. 4a) we plot ReC(Xy,X3;X],Xa| @)e, foOr
surfaceA as a function ok, —x; for a value ofx;=\/10. The
angle of incidence ig=0°. ReC(xy,X3;X],Xs| ®)ey IS SEEN
to be a rapidly oscillating function df;—x;). The period of

these oscillations &y w)=2m/ks(w), as can be seen from

Fig. 4(b), and they arise from the poles d&(q) at q
—+[ksp(w)+|A(w)] in the integrand of Eq(4.29), i.e., they

PHYSICAL REVIEW E 71, 036606(2005
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FIG. 5. The same as Fig. 4 but for surfaCe

Thus these oscillations have an exponentially decreasing en-
velope function of the formCpaexd—[x;—xi|/Lsgw)],
where Lg(w) is the energy mean free path of the surface
plasmon polariton of frequenay supported by the randomly
rough vacuum-metal interface. It is given blg w)
=[2A(w)]™%, and in the present case has the valug )
=62.2.. When the transverse correlation length of the sur-
face roughness is increasedas 400 nm(surfaceC), with

the remaining roughness and experimental parameters retain-
ing the wvalues wused in obtaining Figs. 4,
ReC(xy,Xa; X1, Xs| w)ey has the same oscillatory dependence
on (x;—x;) as it does whem=100 nm, with the same period
As(w) and an exponentially decreasing envelope function
with the same decay length(w) (Fig. 5. The only signifi-
cant effect of the fourfold increase in the valueaofs that

the amplitude of the exponentially decreasing envelope of
the oscillationsC,,., is reduced by a factor of $0This is
because for the value &f{w) arising from the values of

of ande(w) assumed in the present work, a fourfold increase in

aproduces a three orders of magnitude decrease in the power
spectrum of the surface roughnegsa exp[— kS (w)a®/4],
which means that the efficiency of the ex0|tat|on of surface
plasmon polaritons is three orders of magnitude weaker for
the surfaceC than for the surfac@.

VI. CONCLUSIONS

arise due to the excitation of surface plasmon polaritons. We can draw several conclusions from the results ob-
Keeping in mind that the dominant contribution to the inte-tained in this investigation. The first is that the spatial coher-
gral in Eq.(4.29 comes from the first term in its integrand, €nce of the electromagnetic field scattered from a one-
namely the contribution from single scattering processes, théimensional randomly rough metal surface measured in the
pole contribution to it can be easily estimated with the resulfar field, i.e., several wavelengths away from the surface,

that at normal incidence we obtain

@® |e(w) ‘3/2

¢ [e(w) + 17

xexp] ~ k3 a%l4]cog keyX; = X;)]

Xexp— 2A(w)[x, — xq]]

Xexg - 2%s(w/c)R(LN- e(w) - 1)].
(5.3

C(Xq,Xg; X1, Xg| @) gy = gmlmas

does not change with distance from the surface. The second
is that in the near field the spatial coherence depends signifi-
cantly on the distance from the surface. Its magnitude de-
pends strongly on the magnitude of the transverse correlation
length of the surface roughneagor a fixed value of the rms
height of the surface, and decreases ascreases. The third

is that the spatial coherence of the electromagnetic field mea-
sured in the far field as a function af-x; at a fixed dis-
tance from the mean scattering surface mimics the surface
height autocorrelation function for small values (@ —X;)
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and oscillates with two periodsT;=N and T,=\/sin 6, X cog2ay(K)X3 + H(K) 1}
where 6, is the angle of incidence. The oscillations with the _ ,

first period arise from the branch pointstgt +(w/c) present xexdik(x —x)], (6.3
in the Green’s functiorG(q) in the integrand in Eq4.28),  where

and their amplitude greatly decreases with an increase of the Im R

transverse correlation length of the surface roughness. The _ _m

oscillations with the second period arise from the denomina- Al =IRK,  tang(k) = ReR(k) €4

+Kk)?+4I'2 in the i in Eq(4.29. The fourth i
tor (g+k) in the integrand in Eqi4.29. The fourth is a{f for a given value ofk=(w/c)sin , we can determine the

that the spatial coherence of the electromagnetic field me SmplitudeA(k) and phases(k) of R(K), then Eq.(6.3) allows

sured in the near field as a function Bf-x; at a fixed _ - o
distance from the mean scattering surface oscillates with théS 0 0btain C(xy,x3;x,xs[w) from a determination of

period T=\gfw), Where \gw)=27/ksfw) is the wave- F()fl,X3;Xi,X3|'(l)) for that value ofk. To do this we sek;
length of the surface plasmon polaritons supported by th&*: and obtain

vacuum-metal interface. The exponential decay of the ampli- T (% Xa Xe Xal @) = C(Xe X" X1 Xal ) + 1 + 2A(K
tude of these oscillations is characterized by the decay length 00, X1, X5l 0) = Cx0, X510, X5l K
Lsf@), the energy mean free path of the surface plasmon X cog2ap(k)Xg + p(K)]. (6.5
polaritons of frequency supported by the randomly rough A measurement oF (x;, Xa; X, Xs| @) =(|Ha(Xa, Xs| )[2) in the

vacuum-metal interface. .
In closing we note that from an experimental standpoint it
may be easier to measure the correlation function of the totdP

ar field x>\, whereC(xy,Xg; X1, X3| ©) =(|Hy(X2, X3 | ©)sd2)
now a constant whose value dependsp@(k), yields

magnetic field in the vacuum region, T(Xy, X3; Xg, Xa @) = C(K) + 1 + 2A(K)
T (%q, Xal X3, X5| @) = (Ha(Xq, Xa| @) Ho (X1, X5 @), (6.1) xcod2ay(K)xs + d(K)], X33 \.
where Hy(Xq, X3 @) is given by Eq.(3.1). The relation be- (6.6)
tweenT(xg, X} X1, %3| @) and C(xy, X3 %1, X3 | @) i The oscillations of the intensity of the total magnetic field in
T(Xq, Xg; X1, X5 @) = C(Xq,Xg; X1, X5| @) + exlik(x, — X7) thg vacuum region as a function xy‘areT just the well known
. ) ) Wiener fringeg[19]. From the result given by Ed6.6). the
—iag(K) (X3 = x3)] + 2 exflik(x, values of A(k) and ¢(k) can be determined, and hence
- x)IRe(R(K)expli ag(K) (X3 + X5) ]} C(xq,X3; X1, %3] @) for that value ofk.
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